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  Introduction 

The fast-reconnection simulation of ELMs with BOUT++ code in high-confinement mode 
tokamak discharges has been reported by Xu, et al. [PRL, Vol. 105, 175005 (2010)]. We have 
extended these initial BOUT++ simulations by adding the effects of the parallel velocity, Hall 
effect, parallel viscosity and hyper-diffusion in both linear and nonlinear phases [Xia, Xu, 
Dudson & Li, accepted by Contributions to Plasma Physics]. This is important in order to 
capture the impact of ion density on tokamak experiments; e.g. in EDA-H mode and I-mode 
on Alcator C-Mod. Here we improve the previous two-fluid simulations of the pedestal 
collapse by separating the pressure into ion density, ion and electron temperature equations.   

 
In BOUT++ code, there are various differencing schemes, and the 3rd order WENO schemes 
are applied in the advection and magnetic flutter term in previous ELM simulations. In order 
to find the most robust scheme, we test the different combinations of schemes in the 
perpendicular direction. The tests for 3rd order WENO, Arakawa, CTU, upwind and central 
schemes will be reported here.  
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  Background 

In H-mode, the localized edge modes (ELMs) is a 
dangerous perturbation for large tokamaks, such as 
ITER. ELMs are triggered by ideal MHD instabilities. 
The type I ELM is successfully explained by ideal 
peeling-ballooning (P-B) theory in pedestal, in which 
the steep pressure gradients drive ballooning mode 
and bootstrap current generates peeling mode.   

BOUT++ simulates the Peeling-Ballooning 
modes through two fluid framework, 
which could study the nonlinear dynamics 
of ELMs including extensions beyond 
MHD physics. 

ELMs in MAST 
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*Xu, X., et al., Nucl. Fusion 51 103040 (2011) 



  Geometry of BOUT++ 

All the simulations for these work are based on the 
shift circular cross-section toroidal equilibria 
(cbm18_dan8) generated by TOQ codes*. The 
equilibrium pressure is the same for all cases. 
JET-like aspect ratio 
Highly unstable to ballooning modes ( γ~0.2ωA) 
Widely used by NIMROD, M3D, M3D-c1 

       
 

θ 

      ψ 

Field aligned coordinate applied in BOUT++: 

4 * Miller R.L. and Dam J.W.V. Nucl. Fusion 27 2101 (1987). 



  Theoretic Model for 5-Field in BOUT++ 

We extend the peeling-ballooning model with non-ideal physics effects to include: 
diamagnetic drift, ExB drift, resistivity and anomalous electron viscosity. We evolve a set of 
nonlinear evolution equations for perturbations of the ion number density ni , ion 
temperature Ti, electron temperature Te, vorticity      and magnetic flux ψ: 
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Diamagnetic stabilization on linear growth rate 

for spatial constant n0 

For Ideal MHD, spatial constant n0 is equivalent to the previous 3-field results because the 
density terms do not appear in ideal MHD. 

The dispersion relation is written as 

γnc is the  growth rate in ideal MHD and γnd is the 
growth rate with diamagnetic effects. 

 
The diamagnetic drift term provides a 
real frequency and stabilizing effect. So 
the linear growth rate is proportional to 
n0. 

6 



  
Diamagnetic stabilization on linear growth rate 

for spatial constant T0 

If T0 is a spatial constant, then the cross term in the Laplace equation of vorticity generate 
novel effects. 

For Ideal MHD, the cross term just plays 
as the oscillatory term, so for this case the 
linear growth rate should not changed a lot. 

With diamagnetic effects, the linear 
growth rate is inversely proportional to T0. 
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  General cases for both radially varying n0 and T0 

For more general situation, both the equilibrium temperature and density profiles are not 
constant in radial direction. Here we still apply the same pressure profile, but introduce the 
profile for ion density: 
 
 
 
 
There are 5 density profiles are applied in this work: 

Table 1. The parameters of five models of different equilibrium 
ion density profile. 
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Diamagnetic stabilization on linear growth rate for 

both radially varying n0 and T0 

The equilibrium density profiles for the 
cases in Table 1. 

The linear growth rate for the cases 
in table 1. For Ideal MHD model, the 
linear growth rate of case 0’ is larger 
than case 0 by 6.2%. With 
diamagnetic effects, the percentage 
goes to 31.4% for n=15 9 



  The cross term in vorticity can enlarge growth rate  

For spatial constant T0, the Fourier analysis will give the angular frequency as: 
 
 
 
 
 
 
Then the linear growth rate is easily obtained as: 
 
 
This equation shows the qualitatively same results as our simulations 

The similar results have 
been observed using 
MINERVA code*. (a) is for 
spatial constant n0 and (b) for 
a radially varying n0.  
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Cross term 

N. Aiba, M. Furukawa, M. Hirota & S. Tokuda, Nucl. Fusion 50 045002 (2010) . 



Comparison of the radial pressure profiles on the outer mid-plane for the different cases for n=15. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Case 1, 2 and 3 use Neumann boundary in the core region and 1’, 2’ and 3’ apply Dirichlet boundary condition.  

 
At the early nonlinear phase after ELM crashes, T=95TA, the collapse keeps localized around the peak gradient region 
for all the cases. The spatial constant n0  case goes into the core region furthest. 

 
When all the cases go into the late nonlinear phase for some time after ELM crashes, t=175TA, the perturbations go 
into the core boundary except the constant n0 case. This is because the cross term in the vorticity equation provides an 
additional drive on the radial direction. 

  Radial pressure profile revolution during ELM crashes 
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  ELM size evolution after ELM crashes 

In order to describe the nonlinear effects, we define the ELM size as 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
These figures show that the ELM size is larger for a radially varying n0 than for the spatial 
constant density case. This  is related to the results on the previous page, which showed that 
the cross term in the vorticity equation provides an additional drive on the radial direction. 
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  The poloidal distribution of pressure perturbation 

Poloidal slices in the shifted circle configuration. The density perturbation at t = 10TA, t = 
100TA, t = 200TA and t = 325TA for Case 2 are shown here. Red colour is for a positive 
perturbation and blue is for a negative one. 13 



  
Comparison of differencing schemes for ELM 

simulations 

For the purpose of broad application of BOUT++, various differencing schemes has been 
implemented. Here we compare the ELM simulations of 3-field model with several 
differencing methods to find the most robust scheme in ELM simulations. 
The schemes used here are all for the nonlinear Poisson bracket. It means the ExB drift  
(                   ) and magnetic flutter            (                 ). Because the simple methods of straight 
central or upwinding schemes for both terms will result in the code crashes in the early 
nonlinear phase, the special schemes are chosen: 
 

 3rd order WENO: Weighted Essentially Non-Oscillatory, a nonlinear adaptive procedure 
avoiding crossing discontinuities in the interpolation procedure as much as possible 

 
Arakawa:  second order, keep the commutative property of Poisson bracket, the square 
vorticity conservation and kinetic energy conservation. 

 
CTU: Corner Transport Upwind, 1st order, takes into account the effect of information 
propagating across corners of zones in calculating the flux 

 
1st  and 4th order Upwind 

 
4th order central 

b
~
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Linear growth rates for different schemes are 

converged to radial resolutions  

Linear growth rate vs. radial grid resolution. 
The schemes are labeled as X+Y:  
X is the scheme for ExB drift. 
Y is for magnetic flutter term. 

All the schemes obtain convergence 
for sufficiently fine resolution in the 
radial direction.  

 
Convergence for the different 
schemes is expected except for the 1st 
order upwinding for ExB drift, the 
reason is under investigation.  

 
 The CTU scheme shows the largest 
departure from the other schemes in 
linear growth rate, but the differences 
are less than 3%. 
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Nonlinear: higher order ExB convection schemes 

yield saturate pressure 

The nonlinear regime shows a 
more complicated convergence. 
 
For high resolution, 3rd WENO + 
4th order central or + upwinding 
shows good convergence with 3rd 
WENO + Arakawa. The difference is 
less than 3.5%. The full WENO 
scheme is larger by 15.0% 

 
The schemes for ExB drift 
determine the saturate pressure 
more effectively than           . Lower 
order schemes for EXB obtain the 
lower pressure.  

 

b
~
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Nonlinear: higher order ExB convection schemes 

yield ELM size 

The ELM size shows the similar conclusion to saturate pressure. Full WENO also shows a very 
good convergence with the WENO + other schemes, less than 9.5%. At t=140TA, these 
scheme combinations with WENO + others differ less than 27.5%, while at t=200TA the 
difference is  24.5% in comparison with full WENO. 
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Nonlinear: kr power spectra of perturbed pressure are 

converged for 5<kr<80 
The kr power spectrum of time averaged radial pressure are shown.  
 
All the schemes show the similar spectrum at medium kr:  5<kr<80. 

 
For both resolutions, the 1st upwinding + Arakawa shows to larger spectrum at high kr.  

 
For the lower resolution at low kr position, WENO + Arakawa has the same spectrum as the first order schemes for 
ExB, which is different from full WENO case. However, at high kr, these two schemes get almost the same spectrum, 
which is still much larger than other schemes. 

 
For the higher resolution case,  WENO + Arakawa has the spectrum more close to full WENO. At high kr end, both 
spectrums are damped  and similar to other schemes. 
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Lower order + Arakawa scheme works well without 

hyper-resistivity for low radial resolutions 

In the previous BOUT++ simulations with full WENO schemes, hyper-resistivity ηH is added into the model to prevent 
the current sheet to become smaller than the grid scale.  

 
For the lower resolution grid points, the simulation cannot go through to the ELM crashes except with larger ηH or 
smaller SH. For example, we have to use SH=1011 for 260x64 grid and SH=1.43x1012 for 1028x64 case, while SH=1x1012 for 
516x64. 

 
If we change the scheme for magnetic flutter from WENO to Arakawa, the simulation can work well for the 
resolutions below 1028 even without ηH as the numerical scheme provides enough dissapation. However, ηH is 
necessary for 1028x64.  
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  Summary 

5-field: 
Introduce the density and temperature into the ELM module of BOUT++ and expand it 
from 3-field to 5-field model. 
The equilibrium density n0 will not affect the linear growth rate in Ideal MHD model. 
With diamagnetic effects, the growth rate is inversely proportional to n0. 
For the same pressure profile and spatial constant T0 case, the cross term in vorticity 
enlarges the growth rate by 6.2% compared with spatial constant n0 case in Ideal MHD. 
With diamagnetic effects, the number is 31.4% for n=15.  
The density gradient will drive the perturbation into the core region and give a larger 
ELM size. 

 
 Schemes analysis: 

For linear regime, most of the combinations of the schemes we tested in BOUT++ give 
the same results. 
For nonlinear regime, the WENO schemes in ExB drift will give more convergent 
results than other combinations. The Arakawa schemes in nonlinear magnetic flutter 
help the simulations to go through ELM crashes. 
Lower order schemes yield better convergence with radial resolution scan. 
The kr power spectrum shows that all the schemes are similar at medium kr.  
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